Linear Graphs

Card 1: Copy out the tables below and work out what goes in each cell.
$y=6 x+7$

x	-5	-3	0	3	5	10
y						

$y=6 x-7$

x	-5	-3	0	3	5	10
y						

Linear Graphs

Card 2: Copy out the tables below and work out what goes in each cell.
$y=-3 x+7$

x	-5	-3	0	3	5	10
y						

$y=5 x-7$

x	-5	-3	0	3	5	10
y						

Linear Graphs

Card 3: Copy out the tables below and work out what goes in each cell.

$$
y=\frac{3}{5} x+5
$$

x	-5	-3	0	3	5	10
y						

8

$$
3 y=\frac{-}{9} x+3
$$

x	-5	-3	0	3	5	10
y						

Linear Graphs

Card 4: Look at the following equations for graphs. For each one, copy out the following sentence and fill in the blanks:

$$
\begin{gathered}
y=5 x+6 \\
7 y=6 x+7 \\
y=\frac{3}{4} x-12 \\
3 y=7-x
\end{gathered}
$$

For the equation, \qquad , the gradient, m, is \qquad and the intercept, c, is \qquad .

Linear Graphs

Card 5: Look at the following equations for graphs. For each one, copy out the following sentence and fill in the blanks:

$$
\begin{gathered}
y=3 x+4 \\
7 y=14 x+21 \\
y=\frac{7}{4} x-3 \\
3 y=8-2 x
\end{gathered}
$$

For the equation, \qquad , the gradient, m, is \qquad and the intercept, c, is \qquad .

Linear Graphs

Card 6: Write the equations in the form, $y=m x+c$.
a. Gradient of 8 and goes through the point $(0,6)$.
b. Slope of 5 and goes through point $(0,8)$.
c. Slope of 7 and goes through the point $(0,3)$.
d. Gradient of -3 and goes through the point (0,-6).

Copy and complete the following sentence in your books:
If the gradient is positive, then the slope goes from bottom left to \qquad . If
the gradient is negative, then the slope goes from \qquad to

Linear Graphs

Card 7: Use the working below to find the gradient of the line between each of the two points.

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

a. $(5,8)$ and $(9,14)$
b. $(7,-3)$ and $(11,9)$
c. $(-8,-9)$ and $(-3,12)$
d. $(-6,7)$ and $(8,-5)$

Make sure you begin each of these questions with the formula at the top.

Linear Graphs

Card 8: Use the working below to find the gradient of the line between each of the two points.

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

a. $(5,-8)$ and $(9,17)$
b. $(-7,-3)$ and $(11,-9)$
c. $(8,9)$ and $(-3,-12)$
d. $(-6,11)$ and $(-3,-7)$

Make sure you begin each of these questions with the formula at the top.

Linear Graphs

Card 9: Phone calls cost $£ \boldsymbol{f}$ for \boldsymbol{x} minutes. The graph gives the values of y for values of x from 0 to 6 .
i) Give an interpretation of the intercept of the graph in this context.
ii) Give an interpretation of the gradient of the graph.
iii) Find an equation of the form, $y=m x+c$, for the straight line.

Linear Graphs

Card 10: The graph shows the depth, d cm of water in a tank after t seconds.

i) Find the gradient of this graph.
ii) Explain what the gradient represents.

Linear Graphs

Card 11: Two large tanks contained water.
The depth, d cm , of each tank is shown on the graph above.
i. Which tank contained the most water after two minutes?
ii. Which tank might have had the larger hole? How do you know?
iii. Find the gradient of each graph.
iv. Explain what the gradient represents.

Card 12: Find a graph that is parallel to this graph and goes through point $(5,8)$:

$$
2 y+7=6 x
$$

Card 13: Find a graph that is parallel to this graph and goes through point $(5,7)$.

$$
2 y+7=6 x
$$

Linear Graphs

Card 14: Give the gradient of a line that is perpendicular to the ones shown below:

$$
\begin{gathered}
y=5 x+8 \\
3 y+7 x=60 \\
\frac{4}{3} y-2 x=84
\end{gathered}
$$

Remember that a gradient to a line that is perpendicular to it yields

$$
m_{1} \times-\frac{1}{m_{2}}=-1
$$

Linear Graphs

Card 15: Give the equation of a line that goes through the following points:

$$
\begin{array}{cc}
1 & (5,8) \text { and }(-3,11) \\
2 & (8,19) \text { and }(12,17) \\
3 & (-3,23) \text { and }(18,-2)
\end{array}
$$

Linear Graphs

Card 16: Work out the gradient of each of these graphs:

$$
\begin{array}{ll}
\text { i } & 4 y=12 x+7 \\
\text { ii } & 3 y+8 x=14 \\
\text { iii } & 7 x+6 y=20 \\
\text { iv } & 12 x+2 y=31
\end{array}
$$

Linear Graphs

Card 17: Work out the intercept for the following graphs going through the points mentioned.

1) $y=6 x+c \quad(-5,8)$
2) $y=3 x+c$
(7,-9)
3) $y=2 x+c$
$(8,9)$

Linear Graphs

Card 18: Work out the intercept for the following graphs going through the points mentioned.

1) $y=4 x+c \quad(-3,8)$
2) $y=7 x+c$
$(2,-9)$
3) $y=9 x+c$
$(1,9)$

Linear Graphs

Card 19: Find the equation of the lines that are perpendicular to the following graphs and go through the points mentioned:

$$
\begin{array}{lll}
1 & y=8 x-5 \quad(9,12) \\
2 & y=-7 x+9 \quad(12,17) \\
3 & 3 y=15 x+6 \quad(13,18) \\
4 & y=\frac{3}{4} x-8 \quad(-14,-11)
\end{array}
$$

Linear Graphs

Card 20: Find the equation of the lines that are perpendicular to the following graphs and go through the points mentioned:

$$
\begin{array}{ll}
1 & y=x-5 \quad(9,12) \\
2 & 5 y=-\frac{3}{5} x+9 \quad(12,17) \\
3 & 3 y=\frac{7}{8} x+12 \quad(13,-18) \\
4 & y=\frac{3}{4} x-\frac{2}{3} \quad(-14,-11)
\end{array}
$$

